Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(12): 8350-8362, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35543429

RESUMO

The pandemic revealed significant gaps in our understanding of the antiviral potential of porous textiles used for personal protective equipment and nonporous touch surfaces. What is the fate of a microbe when it encounters an abiotic surface? How can we change the microenvironment of materials to improve antimicrobial properties? Filling these gaps requires increasing data generation throughput. A method to accomplish this leverages the use of the enveloped bacteriophage ϕ6, an adjustable spacing multichannel pipette, and the statistical design opportunities inherent in the ordered array of the 24-well culture plate format, resulting in a semi-automated small drop assay. For 100 mm2 nonporous coupons of Cu and Zn, the reduction in ϕ6 infectivity fits first-order kinetics, resulting in half-lives (T50) of 4.2 ± 0.1 and 29.4 ± 1.6 min, respectively. In contrast, exposure to stainless steel has no significant effect on infectivity. For porous textiles, differences associated with composition, color, and surface treatment of samples are detected within 5 min of exposure. Half-lives for differently dyed Zn-containing fabrics from commercially available masks ranged from 2.1 ± 0.05 to 9.4 ± 0.2 min. A path toward full automation and the application of machine learning techniques to guide combinatorial material engineering is presented.


Assuntos
Antivirais , Bacteriófagos , Porosidade , Têxteis
2.
PeerJ ; 9: e11714, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34285833

RESUMO

BACKGROUND: Diet-induced metabolic dysfunction precedes multiple disease states including diabetes, heart disease, and vascular dysfunction. The critical role of the vasculature in disease progression is established, yet the details of how gene expression changes in early cardiovascular disease remain an enigma. The objective of the current pilot project was to evaluate whether a quantitative assessment of gene expression within the aorta of six-week old healthy male Sprague-Dawley rats compared to those exhibiting symptoms of metabolic dysfunction could reveal potential mediators of vascular dysfunction. METHODS: RNA was extracted from the aorta of eight rats from a larger experiment; four animals fed a high-fat diet (HFD) known to induce symptoms of metabolic dysfunction (hypertension, increased adiposity, fasting hyperglycemia) and four age-matched healthy animals fed a standard chow diet (CHOW). The bioinformatic workflow included Gene Ontology (GO) biological process enrichment and network analyses. RESULTS: The resulting network contained genes relevant to physiological processes including fat and protein metabolism, oxygen transport, hormone regulation, vascular regulation, thermoregulation, and circadian rhythm. The majority of differentially regulated genes were downregulated, including several associated with circadian clock function. In contrast, leptin and 3-hydroxy-3-methylglutaryl-CoA synthase 2 (Hmgcs2) were notably upregulated. Leptin is involved in several major energy balance signaling pathways and Hmgcs2 is a mitochondrial enzyme that catalyzes the first reaction of ketogenesis. CONCLUSION: Together, these data describe changes in gene expression within the aortic wall of HFD rats with early metabolic dysfunction and highlight potential pathways and signaling intermediates that may impact the development of early vascular dysfunction.

3.
PLoS One ; 15(9): e0237463, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32970688

RESUMO

Titanium is essentially absent from biological systems yet reliably integrates into bone. To achieve osseointegration, titanium must activate biological processes without entering cells, defining it as a bio-activating material. Nanostructuring bulk titanium reduces grain size, increases strength, and improves other quantifiable physical properties, including cytocompatibility. The biological processes activated by increasing grain boundary availability were detected with total RNA-sequencing in mouse pre-osteoblasts grown for 72 hours on nanometrically smooth substrates of either coarse grain or nanostructured ultrafine grain titanium. The average grain boundary length under cells on the conventional coarse grain substrates is 273.0 µm, compared to 70,881.5 µm for cells adhered to the nanostructured ultrafine grain substrates; a 260-fold difference. Cells on both substrates exhibit similar expression profiles for genes whose products are critical for mechanosensation and transduction of cues that trigger osteoconduction. Biological process Gene Ontology term enrichment analysis of differentially expressed genes reveals that cell cycle, chromatin modification, telomere maintenance, and RNA metabolism processes are upregulated on ultrafine grain titanium. Processes related to immune response, including apoptosis, are downregulated. Tumor-suppressor genes are upregulated while tumor-promoting genes are downregulated. Upregulation of genes involved in chromatin remodeling and downregulation of genes under the control of the peripheral circadian clock implicate both processes in the transduction of mechanosensory information. Non-coding RNAs may also play a role in the response. Merging transcriptomics with well-established mechanobiology principles generates a unified model to explain the bio-activating properties of titanium. The modulation of processes is accomplished through chromatin remodeling in which the nucleus responds like a rheostat to grain boundary concentration. This convergence of biological and materials science reveals a pathway toward understanding the biotic-abiotic interface and will inform the development of effective bio-activating and bio-inactivating materials.


Assuntos
Materiais Biocompatíveis/química , Regeneração Óssea , Nanoestruturas/química , Osteoblastos/citologia , Titânio/química , Animais , Linhagem Celular , Teste de Materiais , Mecanotransdução Celular , Camundongos , Osseointegração , Osteoblastos/metabolismo , Análise de Sequência de RNA , Propriedades de Superfície , Transcriptoma
4.
Mater Res Lett ; 8(6): 239-246, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477832

RESUMO

Studies since 2004 have shown that the cytocompatibility of ultrafine grain (UG) commercial purity (CP) titanium exceeds that of coarse grain (CG) CP titanium (Ti) by 30% to 20-fold. To isolate the factors affecting this large reported variability of CP titanium's cytocompatibility, discs of UG and CG titanium were fabricated with controlled texture and roughness. The discs were seeded with MC3T3-E1 pre-osteoblastic cells and cultured for 72 h. The proliferation of cells on polished UG-Ti exceeded unpolished CG-Ti 3.04-fold. Cell proliferation was found to correlate with a new biophysical parameter, the average grain boundary length per surface-attached cell.

5.
Stand Genomic Sci ; 11: 88, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27980706

RESUMO

Chlorinated solvent contamination of potable water supplies is a serious problem worldwide. Biostimulation protocols can successfully remediate chlorinated solvent contamination through enhanced reductive dechlorination pathways, however the process is poorly understood and sometimes stalls creating a more serious problem. Whole metagenome techniques have the potential to reveal details of microbial community changes induced by biostimulation. Here we compare the metagenome of a tetrachloroethene contaminated Environmental Protection Agency Superfund Site before and after the application of biostimulation protocols. Environmental DNA was extracted from uncultured microbes that were harvested by on-site filtration of groundwater one month prior to and five months after the injection of emulsified vegetable oil, nutrients, and hydrogen gas bioamendments. Pair-end libraries were prepared for high-throughput DNA sequencing and 90 basepairs from both ends of randomly fragmented 400 basepair DNA fragments were sequenced. Over 31 millions reads were annotated with Metagenome Rapid Annotation using Subsystem Technology representing 32 prokaryotic phyla, 869 genera, and 3,181 species. A 3.6 log2 fold increase in biomass as measured by DNA yield per mL water was measured, but there was a 9% decrease in the number of genera detected post-remediation. We apply Bayesian statistical methods to assign false discovery rates to fold-change abundance data and use Zipf's power law to filter genera with low read counts. Plotting the log-rank against the log-fold-change facilitates the visualization of the changes in the community in response to the enhanced reductive dechlorination protocol. Members of the Archaea domain increased 4.7 log2 fold, dominated by methanogens. Prior to remediation, classes Alphaproteobacteria and Betaproteobacteria dominated the community but exhibit significant decreases five months after biostimulation. Geobacter and Sulfurospirillum replace "Sideroxydans" and Burkholderia as the most abundant genera. As a result of biostimulation, Deltaproteobacteria and Epsilonproteobacteria capable of dehalogenation, iron and sulfate reduction, and sulfur oxidation increase. Matches to thermophilic, haloalkane respiring archaea is evidence for additional species involved in biodegradation of chlorinated solvents. Additionally, potentially pathogenic bacteria increase, indicating that there may be unintended consequences of bioremediation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...